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ABSTRACT. The article builds the original foundations of a new operator theoretic setting
for the study of quantum dynamics of non-perturbative aspects originated from Green’s
functions in Quantum Field Theory with strong couplings.
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1. INTRODUCTION

In this research article we obtain some new applications of renormalization Hopf alge-
bra, Noncommutative Geometry and Functional Analysis to deal with complicated physi-
cal processes in Quantum Field Theory beyond the perturbation theory. At the first step, we
formulate a new multi-scale non-perturbative renormalization group on the set of Dyson–
Schwinger equations which encodes the dynamics of these non-perturbative type of equa-
tions under changing the scales of momenta (or running coupling constants derived from
dimensional regularization and renormalization schemes) and bare strong coupling con-
stants (which are independent from regularization processes and renormalization maps).
At the second step, we construct a new class of spectral triples in Noncommutative Ge-
ometry which are originated from fixed point equations of Green’s functions such that our
study offers a new spectral geometric approach to deal with the geometry of quantum mo-
tions. At the third step, we discuss the concept of evolution of finite formal expansions of
Feynman diagrams (which converge to the unique solution of a given Dyson–Schwinger
equation) under the Gelfand transform in functional analysis and generalized Dyson series
(formulated by Johnson and Lapidus). The achievements of this research work move for-
ward our knowledge about dynamics and geometry of quantum motions in modern Quan-
tum Field Theories with strong couplings such as models of non-perturbative asymptotic
freedom.

The reconstruction of geometries under algebraic settings is useful to obtain some new
computational tools for the study of quantum systems. The story begins with passing from
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mathematical structures which describe Classical Mechanics such as manifolds, groups
and points to mathematical structures which describe semi-Classical Mechanics such as
Poisson manifolds, Poisson Lie groups and 0-leaf and then developing concepts such as
noncommutative algebra, noncommutative Hopf algebras and homomorphisms to discover
the foundations of Quantum Mechanics. Noncommutative Geometry is capable to encode
(semi-)Classical and Quantum Mechanics in terms of modern algebraic and geometric
tools where the notion of ”distance” is interpreted in the context of Dirac operator which
leads us to encode the geometry of a physical theory in the language of spectral triples.
[3, 10, 11, 22]

We can study physical models in the language of Lagrangian density such as Quantum
Field Theory in terms of Green’s functions originated from the interaction part of the La-
grangian. Each term in Green’s functions can have an ill-defined iterated integral which
requires renormalization to generate finite values. Dealing with Feynman integrals, which
have nested or overlapping sub-divergencies, is one of the most important challenges and in
this direction, renormalization of this class of integrals has been formulated in the language
of Feynman diagrams and the Bogoliubov–Zimmermann’s forest formula. In addition,
thanks to the Kreimer’s renormalization coproduct, the Connes–Kreimer renormalization
Hopf algebra of Feynman diagrams enables us to encode the perturbative renormalization
machinery under some general mathematical concepts which is useful to find some new
computational tools. Furthermore, the geometric interpretation of the modified Standard
Model has shown the essential role of Noncommutative Geometry and its potential for the
description of modern physical theories. [2, 3, 17, 18, 21, 22, 31, 30, 35]

In Quantum Field Theories with strong couplings, we need to deal with even more
complicated problems originated from infinite formal expansions of Feynman integrals (or
Feynman diagrams) under running and bare coupling constants. Fixed point equations
of Green’s functions are the original tools to classify these expansions where we study
Dyson–Schwinger equations. Generally speaking, Green’s functions are infinite formal
expansions of Feynman diagrams such that most of the series in this formalism are diver-
gent or at most, asymptotic rather than convergent. The situations beyond perturbation
theory are determined by general expressions such as

(1.1) P (g) = X0 + gX1 + g2X2 + ...+ gnXn + ...

such that g is the (bare) coupling constant and each term Xn is the symbol for the class of
Feynman diagrams which contribute to the order n of the perturbative expansion. In phys-
ical theories with very small g, it is enough to concern only the first terms of the above ex-
pansion but in physical theories with strong coupling g, we can observe the appearance of
nonperturbative phenomena which are encoded in the context of Dyson–Schwinger equa-
tions. [6, 8, 14, 24, 25]

In the second section our main effort focuses on the understanding of non-perturbative
Quantum Field Theory from the viewpoint of the Connes–Kreimer renormalization Hopf
algebra and Hochschild cohomology theory where we formulate a new multi-scale non-
perturbative renormalization group on the set of all Dyson–Schwinger equations of a given
physical theory. This new construction enables us to study the dynamics of non-perturbative
situations on the basis of changing the scales of momenta and bare strong coupling con-
stants. This method enables us to study a given Dyson–Schwinger equation under strong
bare or running coupling constant in terms of the cut-distance convergent limit of a se-
quence of Dyson–Schwinger equations under weaker couplings. In the third section we
plan to build a new Noncommutative Geometry model to encode Dyson–Schwinger equa-
tions where we explain the structure of a particular class of spectral triples which are ca-
pable to describe quantum motions. This methodology leads us to obtain some new in-
vestigations about the geometry of Quantum Field Theory beyond the perturbation theory.
In the fourth section we focus on the concept of ”evolution” at the level of combinatorial
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Dyson–Schwinger equations where thanks to the Gelfand transform, we formulate a mod-
ified version of the Fourier transformation for the measure space of Feynman diagrams of
a given physical theory. In addition, we apply the generalized Dyson series (formulated by
Johnson and Lapidus [15]) to find another alternative machinery to describe the evolution
of large graphs in the language of Dyson series.

2. A MULTI-SCALE RENORMALIZATION GROUP ON THE SET OF ALL
DYSON–SCHWINGER EQUATIONS OF A PHYSICAL THEORY

In this part we are going to build two classes of renormalization groups which act on the
set of all Dyson–Schwinger equations of a given physical theory with respect to changing
the scales of momentum and bare strong coupling constants, separately and then we will
formulate a new multi-scale non-perturbative renormalization group which is capable to
control the behavior of dynamics of Dyson–Schwinger equations under changing the scales
of those two parameters.

The renormalization coproduct on Feynman diagrams is given by the relation

(2.1) ∆(Γ) = Γ⊗ I + I⊗ Γ +
∑
γ⊂Γ

γ ⊗ Γ/γ

where the sum is over all disjoint unions of 1PI superficially divergent proper subgraphs
[2, 18]. This coproduct can be reformulated in terms of the grafting operatorB+ as a linear
operator which replaces a vertex in a given Feynman diagram with a whole graph in terms
of the type of the vertex in the first graph and types of external edges in the second graph.
Consider the chain complex C = {Cn}n≥0 such that for each n, Cn is the set of all linear
maps T from H = HFG(Φ) to H⊗n and the coboundary operator is given by

(2.2) bT := (id⊗ T )∆ +

n∑
i=1

(−1)i∆iT + (−1)n+1T ⊗ I.

The operatorB+ generates an important class of one cocycles with respect to the Hochschild
cohomology theory on (C,b). Thanks to the relation (2.2), for a given family {γn}n∈N of
(1PI) primitive Feynman diagrams, {B+

γn}n∈N is the corresponding family of Hochschild
one cocycles. In addition, the Feynman rules characters are generally of the form

(2.3) ϕ(B+
γn(Γ))({q}) =

∫
dγn({k}, {q})ϕ(Γ)({k})

such that dγn({k}, {q}) is a measure determined by primitive (1PI) graph γn which de-
pends on internal loop momenta {k} and external momenta {q}. Now apply the Mellin
transformation of the form

(2.4) Fγn(s) =

∫
ϕ(B+

γn(I))[k2]−s

enables us to reformulate Dyson–Schwinger equations as a class of combinatorial equa-
tions in H[[g]] of the form

(2.5) X = I +
∑
n≥1

gnωnB
+
γn(Xn+1).

It has the unique solution X =
∑
n≥0 g

nXn which belongs to the completed topological
Hopf algebra of Feynman diagrams respect to the cut-distance topology such that for each
n,

(2.6) Xn =

n∑
j=1

ωjB
+
γj (

∑
k1+...+kj+1=n−j, ki≥0

Xk1
...Xkj+1

) ∈ H.
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This unique solution determines a graded commutative (finite type) Hopf subalgebraHDSE

of the renormalization Hopf algebra of Feynman diagrams which is free algebraically gen-
erated by objects Xn’s. [17, 29, 30, 36]

Example 1. Consider a decorated version of the Connes–Kreimer renormalization Hopf
algebra HCK(I) of non-planar rooted trees decorated by I = {a, b}. The unique solution
of the Dyson–Schwinger equation

(2.7) X = I + gB+
a (X2) + g2B+

b (X3)

with the coupling constant g = 1 in HCK is given by the infinite formal expansion X =∑
n≥0Xn. The operatorB+

a acts on forests of rooted trees where it adds a new root labeled
by a and then connects it with each roots of trees in each forest. We have

X0 = I, empty tree,

X1 = B+
a (I) = a, single vertex labeled by ”a”,

X2 = 2B+
a (a) + b,

X3 = 2B+
a (X2) +B+

a (aa) + 3B+
b (a),

(2.8) X4 = 2B+
a (X1X2) + 2B+

a (X3) + 3B+
b (X1X1) + 3B+

b (X2),

X5 = 2B+
a (X1X3)+B+

a (X2X2)+2B+
a (X4)+6B+

b (X1X2)+B+
b (X1X1X1)+3B+

b (X3),

...

Each component Xn is a linear combination of rooted trees with the maximum overall
vertex number n which contribute to the recursive equation (2.7). The complicated graph
X does not belong to HCK(I) and we need an enrichment of this Hopf algebra to restore
X . The pixel picture presentations of rooted trees can be applied to translate the topology
of graphons to rooted trees and equip HCK(I) with the cut-distance topology to obtain
a compact topological Hopf algebra denoted by Hcut

CK(I). It is then shown that X is the
cut-distance convergent limit of the sequence {X(n)}n≥0 of its partial sums [30].

Thanks to the Wilson’s approach to renormalization group, which is on the basis of the
re-scaling of the momentum parameter at the cut-off propagator level, we plan to obtain
an abstract formulation of non-perturbative renormalization group to study the changes of
the dynamics of Dyson–Schwinger equations when the scale of the momentum parameter
is changed. Consider a given Lagrangian with the general form

(2.9) L =

∫
(1/2a(∇φ)2 + 1/2m2φ2 + I(φ))d4x

such that a ∈ R+, I(φ) =
∑
k≥2 Ik(φ) and for any N ≥ 0, Ik = O(gN ) for almost all k.

The re-scaling procedure allows us to study an effective Lagrangian at the scale µ ≤ Λ of
a given Lagrangian L at the initial scale Λ where at the end of the day, we can determine a
semigroup R≤1

+ of scales which acts on the space of physical theories. For a given (bare)
coupling constant g, let X be the space of all Lagrangians of φ with coefficients in the
ring R[[g]] and invariant under the change φ −→ −φ. For each k, define the space Fk
as the set of smooth functions on the hyperplane

∑k
i=1 vi = 0 in (V ∗)⊕k such that V is

the Euclidean 4-dimensional space-time and then set F =
∏∞
i=1 F2i. A general form of

Green’s functions is given as maps such as

(2.10) G : X ×Mm −→ F, G = (G2,G4, ...)

such that Mm is the set of scales of momenta, the value Gk at (L,Λ) is called the k−point
correlation function of the Lagrangian L at the scale Λ and for each k, Gk is the sum of
amplitudes of all Feynman diagrams with k external edges. Define

(2.11) G̃Λ(p) =
P (p2/Λ2)

p2 +m2
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as the cut-off propagator in momentum space such that P is a smooth function on R>0

which is 1 on (0, 1/2], 0 on (2,+∞) and varies on (1/2, 2). Apply cut-off propagator for
internal edges and free propagator for external edges. [7]

Fixed point equations for general Green’s functions in a Quantum Field Theory Φ have
the form

(2.12) G = 1 +

∫
IγG

, which produce an abstract presentation for Dyson–Schwinger equations with the combi-
natorial form (2.5) where Iγ is an integral kernel with respect to the 1PI Feynman diagram
γ. Set SΦ as the family of all Dyson–Schwinger equations originated from general Green’s
functions (2.12) in Φ.

Definition 2.1. An equation in SΦ is called effective at the scale Λ of the original equa-
tion DSE at the scale Λ0, if the fixed point equation which generates DSE in the Green’s
function G(LΦ,Λ0) coincides with the fixed point equation which generates DSE in the
Green’s function G(LΦ,Λ).

Lemma 2.2. Let Φ be Quantum Field Theory with the Lagrangian LΦ ∈ X . For any
equation DSE in SΦ and any scales Λ0,Λ for the momentum parameter, there exists a
unique effective equation in SΦ at the scale Λ for the original equation DSE at the scale
Λ0.

Proof. A homogenous interaction of degree k is a complex valued continuous homogenous
Poincaré invariant polynomial functional such as J on the space of Schwartz functions on
V . Its general formulation is given by

(2.13) J(φ) =

∫
KJ(x1, ..., xk)φ(x1)...φ(xk)dx1...dxk

such that it is called quasilocal if the Poincaré invariant distribution KJ has rapid decay at
infinity which means that the Fourier transformation of KJ will be

(2.14) K̃J = δ(p1 + ...+ pk)F̃J(p1, ..., pk−1).

It is shown that any quasilocal interaction J of degree k ≥ 1 can be represented in terms
of a Taylor expansion type formula such as

(2.15) J(φ) =

s−1∑
j=0

∫
V

Dj [φ(x1)...φ(xk−1)]|x1=...=xk−1=xφ(x)dx+ Js(φ)

where
- Js is of order larger than s,
- For all j ≥ 0, Dj is the homogenous differential operator of order J which can be

identified uniquely. [7]
Now consider the original Lagrangian LΦ at the scale Λ0 and then apply a re-scaling

process to generate a new LagrangianLΦ
Λ at the scale Λ which has the property G(LΦ

Λ,Λ) =

G(LΦ,Λ0) and is called effective. The smooth function F̃Jk for the effective Lagrangian
can be defined in terms of the sum of amplitudes of all connected Feynman diagrams with
k external edges and in addition for the propagator we have

(2.16) G̃Λ0Λ(p) := G̃Λ0(p)− G̃Λ(p).

On the other hand, each Lagrangian is determined uniquely on the basis of its correlation
functions and in addition, Dyson–Schwinger equations come from fixed point equations of
Green’s functions. Thanks to these investigations and Definition 2.1, for any given equation
DSE in SΦ at the scale Λ0, we can generate uniquely its corresponding effective equation
at the scale Λ in terms of the effective Lagrangian. �
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Lemma 2.2 explains the machinery which re-scales the momenta of internal edges of
each term of an infinite formal expansion of Feynman diagrams which are generated by
the unique solution of a given Dyson–Schwinger equation. This changing of the scale has
been performed by the cut-off propagator (2.11).

Proposition 2.3. For a given Quantum Field Theory Φ with the LagrangianLΦ ∈ X , there
exists a renormalization group on SΦ which encodes the dynamic of Dyson–Schwinger
equations under the re-scaling of the momentum parameter.

Proof. Let Mm be the set of scales of the momentum parameter which is non-canonically
isomorphic to R+ and consider SΦ as the family of all Dyson–Schwinger equations of
the form (2.5) originated from Green’s functions in the (renormalizable) Quantum Field
Theory Φ. For any scales Λ1,Λ2,Λ3 ∈ Mm such that Λ1 < Λ2 < Λ3, define the scale
map Rm

Λ1Λ2
on SΦ which obeys the property

(2.17) Rm
Λ1Λ2

Rm
Λ2Λ3

= Rm
Λ1Λ3

.

Now thanks to Proposition 2.2 for each equation DSE in SΦ define the new equation
Rm

Λ1Λ2
DSE whose belongs to SΦ as the effective Dyson–Schwinger equation at the scale

Λ2 of the equation DSE at the initial scale Λ1. As the result, we enable to define an action
of the semi-group R+

≤1 on the space SΦ ×Mm which is given by

(2.18) λ ◦ (DSE,Λ) := (Rm
Λ,λΛDSE, λΛ).

This construction provides an abstract model for the renormalization group on Dyson–
Schwinger equations of the theory Φ which depends on the changing the scales of the
momentum parameter. �

We name the renormalization group defined by Proposition 2.3 as the momentum type
non-perturbative renormalization group. This renormalization group proposes a new way
to study the dynamics of Dyson–Schwinger equations in terms of their corresponding equa-
tions under the running couplings derived from the chosen regularization schemes and
scaled momenta. It is actually a modification of the standard running coupling type renor-
malization group which acts on Dyson–Schwinger equations.

Proposition 2.4. For a given Quantum Field Theory Φ with the LagrangianLΦ ∈ X , there
exists a renormalization group on SΦ which encodes the dynamics of Dyson–Schwinger
equations under the re-scaling of the bare coupling constants.

Proof. As we know the parameter g (as the bare coupling constant) has been included in
the interaction part I(Φ) of the Lagrangian where infinite formal expansions of Feynman
diagrams will appear. This interaction part is indeed the part which contribute to formulat-
ing Dyson–Schwinger equations via fixed point equations of Green’s functions. Work on
changing the scale of the coupling constant (before regularization schemes and renormal-
ization maps) enables us to study the asymptotic behavior of Green’s functions and related
fixed point equations at the original level. Therefore we require to focus on changing scales
such as g to Λg in the interaction part of the original Lagrangian LΦ.

Let Mb be the set of scales of bare coupling constants which is non-canonically iso-
morphic to R+ and consider SΦ as the family of all Dyson–Schwinger equations of the
form (2.5) originated from Green’s functions in Φ. For any scales τ1, τ2, τ3 ∈ Mb such
that τ1 < τ2 < τ3, define the scale map Rb

τ1τ2 on SΦ which obeys the property

(2.19) Rb
τ1τ2R

b
τ2τ3 = Rb

τ1τ3 .

Now for each equation DSE in SΦ define the new equation Rb
τ1τ2DSE ∈ SΦ as the re-

scaled Dyson–Schwinger equation at the scale τ2 of the equation DSE at the initial scale
τ1. This allows us to define an action of the semi-group R+

≤1 on the space SΦ ×Mb given
by

(2.20) λ ◦ (DSE, τ) := (Rb
τ,λτDSE, λτ).
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This construction provides an abstract model for the renormalization group on Dyson–
Schwinger equations of the theory Φ which depends on the changing the scales of the bare
coupling constant parameter. �

We name the renormalization group defined by Proposition 2.4 as the bare type non-
perturbative renormalization group. This renormalization group proposes a new way to
study the dynamics of Dyson–Schwinger equations with strong bare couplings in terms
of their corresponding equations at the smaller couplings independent of the regularization
and renormalization procedures. It enables us to re-scale a bare strong coupling constant to
produce a decreasing sequence of re-scaled couplings where Dyson–Schwinger equations
at the level of weaker couplings can be handled under perturbative treatments. As the
result, we will have the chance to study a given Dyson–Schwinger equation at the strong
bare coupling in terms of a sequence of equations in weaker couplings.

Corollary 2.5. For a given Quantum Field Theory Φ with the Lagrangian LΦ ∈ X , there
exists a multi-scale renormalization group on SΦ which encodes the dynamics of Dyson–
Schwinger equations under the re-scalings of the bare coupling constant and the momen-
tum parameter.

Proof. Running couplings do not have any clear physical meanings and we can change
them in terms of the cut-off propagator and the re-scaling of the momentum parameter.
Therefore the scale of the bare coupling constants (as a physical parameter) has more
priority than the scale of the running couplings. Consider the expression (DSE, τ,Λτ ) in
the space SΦ×Mb×Mm which presents a Dyson–Schwinger equation in SΦ such that it
is defined in terms of the bare coupling constant with the initial scale τ and the momentum
parameter with the initial scale Λτ . Thanks to Proposition 2.3 and Proposition 2.4, define
a new action of the semi-group R+

≤1 on the space SΦ ×Mb ×Mm given by

(2.21) λ ◦ (DSE, τ,Λτ ) := (Rmulti
(τ,Λτ ),(λτ,λΛτ )DSE, (λτ, λΛτ ))

such that Rmulti
(τ,Λτ ),(λτ,λΛτ )DSE is a new multi-scaled Dyson–Schwinger equation which is

defined on the basis of the scaled bare coupling constant parameter of the size λτ and the
scaled momentum parameter λΛτ . �

Corollary 2.5 provides a mathematical machinery to produce running couplings in terms
of choosing the scale of the bare couplings before perturbative renormalization procedure.

For example in QCD, there exist eight classes of 1PI Green’s functions with respect to
the types of fields e1, e2, e3 namely, quark, ghost, gluon and five possible types of interac-
tions v1, ..., v5 among those fields. By applying the bare type non-perturbative renormal-
ization groupRb (i.e. Proposition 2.4) and the momentum type non-perturbative renormal-
ization group Rm (i.e. Proposition 2.3), we can generate Green’s functions in all possible
scales of the bare coupling constant and the momentum parameter. We use the phrases

(2.22) Gei(τ,Λτ ) = 1−
∑

res(Γ)=ei

(τg)L(Γ) Γ

Sym(Γ)
, i = 1, 2, 3,

(2.23) G
vj
(τ,Λτ ) = 1 +

∑
res(Γ)=vj

(τg)L(Γ) Γ

Sym(Γ)
, j = 1, ..., 5,

such that τg are the results of changing the scale of the bare coupling constant g, Λτ is
the scale of the momentum parameter. The restriction of the sum to graphs at loop order
L(Γ) = l can be presented by Gr,l(τ,Λτ ) where r ∈ {ei, vj}i,j .

Consider SQCD as the collection of all Dyson–Schwinger equations as the results of
fixed point equations of Green’s functions Gei(τ,Λτ ), G

vj
(τ,Λτ ) which could cover Dyson–

Schwinger equations under different running couplings in QCD. At relatively lower en-
ergy levels, these Green’s functions behave non-perturbatively because of strong running
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couplings and we need to deal infinite formal expansions of Feynman diagrams as coeffi-
cients of powers of those running couplings. The multi-scale renormalization group given
by Corollary 2.5 enables us to study the behavior of Green’s functions of the type (2.22),
(2.23) in SQCD with respect to each other while running couplings have been changed in
terms of energy levels. In addition, thanks to the topology of graphons, it is also possible
to describe the inverse of these Green’s functions at infinite loop orders which enables us
to provide some new non-perturbative computational methods. For example in [29], we
have formulated a class of β-functions which control the behavior of solutions of Dyson–
Schwinger equations under changing the scales of running coupling constants.

3. NON-PERTURBATIVE SPECTRAL TRIPLES

The previous section has provided a new mathematical description for the dynamics of
non-perturbative situations in Quantum Field Theory on the basis of changing the scales
of the bare coupling constant and the momentum parameter which contribute to Dyson–
Schwinger equations. In this section we study the geometry of quantum motions via a new
application of Noncommutative Geometry to Quantum Field Theory. We will build a new
class of spectral triples which are capable to encode the geometry of Dyson–Schwinger
equations.

Theory of spectral triples has been developed to interesting complicated structures such
as AF C∗-algebras and fractal sets ([4, 5, 9, 27]) and in this part we plan to provide another
progress in this direction and explain the structure of a new class of spectral triples which
are originated from Dyson–Schwinger equations.

Suppose we have a countable family {(Am,Hm, Dm)}m≥1 of spectral triples (which
are not necessarily unital) with the corresponding family of representations {πm}m≥1.
Moreover, let {αm}m≥1 be a sequence of non-zero real numbers such that ||(1+α2

mD
2
m)

−1
2 ||m

converges to zero whenever m tends to infinity where ||.||m is the norm on Hm. Now set
H⊕ :=

⊕
m≥1 Hm,

D⊕ :=
⊕

m≥1 αmDm with the corresponding self-adjoint extension D⊕,

A⊕ := {(am)m≥1 ∈
∏
m

Am :

supm≥1||πm(am)||m < +∞, supm≥1||[αmDm, πm(am)]||m < +∞}.
For each a⊕ ∈ A⊕, π⊕(a⊕) :=

⊕
m≥1 πm(am). It is shown in [9] that the information

(A⊕,H⊕, D⊕) is a spectral triple which is not necessarily unital. Generally speaking, this
spectral triple is originated from five-tuples with the general form (Am,Hm, Dm, πm, αm)
for each m ≥ 1.

We are going to apply this model to the level of Green’s functions to discover a new
knowledge about the geometry of non-perturbative Quantum Field Theory. For this pur-
pose, we need to determine the required mathematical structures for a spectral triple with
respect to each Dyson–Schwinger equation.

For a given commutative Hopf algebra H , let Spec(H) be the set of all prime ideals of
H equipped with the Zariski topology and the structure sheaf. The Hopf algebraic structure
of H generates a product operation on Spec(H) which satisfies the properties of a group
structure. The resulting space is called affine group scheme. Under a categorical setting,
Spec is a contravariant functor from the category of commutative algebras to the category
of topological spaces such that the object G = Spec(H) is a covariant representable func-
tor from the category of commutative algebras to the category of groups. [23]

For each commutative algebra A, the group G(A) = Spec(H)(A) is the set of mor-
phisms of the form

(3.1) ϕ ∈ G(A) : ϕ : H −→ A, ϕ(h1h2) = ϕ(h1)ϕ(h2), ϕ(1h) = 1A,

equipped with the convolution product ϕ1 ∗ ϕ2(h) := m ◦ (ϕ1 ⊗ ϕ2) ◦∆(h).
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The space GLn is the fundamental example of an affine group scheme for us which cor-
responds to the Hopf algebraHGLn = k[xi,j , t]i,j=1,...,n/det(xi,j)t−1 with the coproduct
∆(xi,j) =

∑
s xi,s⊗xs,j . It is shown that if the Hopf algebra H is finitely generated as an

algebra, then its corresponding affine group scheme is a linear algebraic group embedded
as a Zariski closed subset of some GLn. [23]

Lemma 3.1. For a given collection {Hn}n≥0 of finitely generated commutative Hopf sub-
algebras of a given Hopf algebra H , suppose H =

⋃
n≥0Hn such that for all n and m,

there exists a k such that Hn ∪Hm ⊂ Hk. Then for each n, there exists the corresponding
linear algebraic groups of the form Gn(C) = Spec(Hn)(C) < GLmn(C) for some mn.
These algebraic groups generate the affine group scheme G associated to the Hopf algebra
H via the projective limit G = lim←−nGn. [23]

Proposition 3.2. There exists a class of spectral triples which provides an algebraic re-
construction of the geometry of quantum motions in a given Quantum Field Theory Φ.

Proof. We consider Dyson–Schwinger equations as the original sources of quantum mo-
tions. For each given Dyson–Schwinger equation DSE, its corresponding Hopf sub-algebra
is graded of finite type which means that HDSE(Φ) =

⋃
n≥0H

n
DSE(Φ). For each n, the

finite dimensional component Hn
DSE(Φ), as a finite dimensional vector space, could de-

termine the finite dimensional complex Lie group G(n)
DSE(C) which can be embedded as

a closed subset of the linear algebraic group GLmn(C) for some mn with respect to the
Zariski topology. Thanks to Lemma 3.1, we can describe the complex Lie group GDSE(C)

as the projective limit of G(n)
DSE(C)’s as closed subsets of GLmn(C)’s while for each mn,

the finite dimensional Riemannian manifold GLmn(C) can be described by the spectral
triple

(3.2) S(mn) := (C∞(GLmn(C)), L2(GLmn(C), S), DGLmn (C)).

Restrictions of the spectral triple (3.2) could determine spectral triples corresponding to Lie
sub-groups of GLmn(C). For each n, we present the spectral triple of the Lie sub-group
G(n)

DSE(C) by

(3.3) S(n)
DSE = (A

(n)
DSE,H

(n)
DSE, D

(n)
DSE).

Now consider the family {S(n)
DSE}n of countable number of spectral triples originated from

components of the graduation structure of the Hopf sub-algebra HDSE(Φ) generated by
the equation DSE. Moreover, let {αn}n be a sequence of non-zero real numbers such that
||(1 +α2

n(D
(n)
DSE)2)

−1
2 ||n converges to zero whenever n tends to infinity where ||.||n is the

norm on H(n)
DSE. Thanks to the explained construction in the previous part, the information

(3.4) S⊕DSE := (A⊕DSE,H
⊕
DSE, D

⊕
DSE)

is a spectral triple which is originated from five-tuples

(3.5) (A
(n)
DSE,H

(n)
DSE, D

(n)
DSE, π

(n)
DSE, αn)

for each n. �

We name the spectral triple S⊕DSE as non-perturbative spectral triple with respect to the
equation DSE which has the following properties:

- The norm of the Hilbert space H⊕DSE is given by

(3.6) ||.||⊕ := supn||.||n.

- Thanks to the structure of A⊕DSE, we can see that the representation π⊕DSE and the
commutator [D⊕DSE, π

⊕
DSE(A⊕DSE)] are bounded.
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- The sequence {αn}n has been applied to control the behavior of the sequence {D(n)
DSE}n

which means that

(3.7)
∑
n

dim(KerD
(n)
DSE) <∞.

It is possible to embed the renormalization Hopf algebra of Feynman diagrams of a
gauge field theory into a decorated version of the Connes–Kreimer Hopf algebra of non-
planar rooted trees which enables us to deal with Dyson–Schwinger equations in this com-
binatorial Hopf algebra . Vertices in trees are symbols for loops or (1PI) primitive Feynman
diagrams and edges between vertices in trees encode the positions of loops with respect to
each other in complicated Feynman diagrams. Each Feynman diagram with nested or inde-
pendent loops can be presented by a decorated non-planar rooted tree while each Feynman
diagram with overlapping divergences should be presented by a linear combination of dec-
orated rooted trees. [1, 2, 18, 16]

Example 2. Let us build the noncommutative spectral triple for the non-linear Dyson–
Schwinger equation

(3.8) X = I + gB+
γ (X2)

in the Connes–Kreimer renormalization Hopf algebra HFG(Φ) of Feynman diagrams of
the physical theory Φ. The analytic version of this equation can be formulated by applying
Feynman rules of the physical theory encoded by some characters φ of the renormalization
Hopf algebra where the linear operator B+

γ is the sum of all possible ways that we can
insert the primitive 1PI Feynman diagram γ into a Feynman diagram. We have

(3.9) φB+
γ (I)[z] =

∫ ∞
0

k(x, z)dx

as the Fourier transform of a homogeneous kernel k with respect to the multiplicative group
R+. The corresponding regularized Feynman rules characters can be given by

(3.10) φB+
γ (Γ)[z] =

∫ ∞
0

(k(x, z)− k(x, 1))φ(Γ)[x]dx.

If we apply the Feynman rules character to the equation (3.8), then we have its correspond-
ing integral equation

φ(X)[z, g] = 1 + g

∫ ∞
0

(φ(X)[x, g])2(k(x, z)− k(x, 1))dx

(3.11) = 1 +

∫ ∞
0

gτφ(X)[x, g](k(x, z)− k(x, 1))dx

such that g is the bare coupling constant and gτ = gφ(X)[x, g] is a running coupling con-
stant. φ(X) is well-defined in terms of the convergence of the sequence {φ(X(n))}n≥0

with respect to partial sums of X . In addition, the solutions of these equations have a gen-
eral form G = exp(−

∑
j≥1 uj(g)lnj(z)) [1, 30]. Therefore we can produce a collection

of equations by changing scales of the bare coupling constant. If the running coupling is
constant, then the non-linear equation (3.11) can turn into a linear equation which is easier
to solve. But dealing with non-linear equations is the main challenge and our built multi-
scale renormalization group (i.e. Corollary 2.5) enables us to study the behavior of the
original equation (3.11) in terms of changing the scales of the bare coupling g and running
couplings.

Rooted tree representations of Feynman diagrams allow us to simplify the formulations
of Dyson–Schwinger equations as some recursive equations in the combinatorial Hopf al-
gebra HCK(Φ) of non-planar rooted trees decorated by primitive (1PI) Feynman diagrams
of the physical theory. In this setting the operator B+

γ is replaced by the Hochschild one
cocycle map B+

aγ which adds a new root labeled by aγ together with an edge to the rooted
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tree representation of each Feynman diagram. The unique solution of the equation (3.8) is
given by X =

∑∞
n=0 g

nXn such that

(3.12) X0 = I, Xn+1 =

n∑
k=0

B+
aγ (XkXn−k).

Formal expansions Xns, which are actually weighted sums of rooted trees with vertex
fertility bounded by two, play the role of algebraic generators of a new Hopf subalgebra
HX of HCK(Φ) which is graded in terms of number of vertices. For each n ≥ 0, H(n)

X is
a finite dimensional vector space of rooted trees with n vertices or products of rooted trees
with overall vertex number n and with vertex fertility bounded by two. For each n, H(n)

X is
a subspace ofH(n)

CK and therefore the linear algebraic groupG(n)
X (C) as dual toH(n)

X can be
embedded in GLn(C). For each n, defineA(n)

X = C∞(G
(n)
X (C)), H(n)

X = L2(G
(n)
X (C), S)

and determine the Dirac operator D
G

(n)
X (C)

by the restriction of the domain of the Dirac
operator DGLn(C). This information provides the spectral triple SnX with respect to the
subalgebra H(n)

X . Thanks to Proposition 3.2, the sequence {SnX}n≥0 could determine the
infinite spectral triple S⊕X corresponding to the Hopf subalgebra HX .

The next result provides an alternative representation of those spectral triples which
encode the geometry of non-perturbative Dyson–Schwinger equations in QCD.

Corollary 3.3. The geometry of Dyson–Schwinger equations in QCD can be described by
formal diffeomorphisms in five dimensions.

Proof. Set D̄iff(C5, 0) as the complex Lie group of formal diffeomorphisms tangent to the
identity in five variables that leave the five axis-hyperplanes invariant and equipped with
the composition as the multiplication. Each f ∈ D̄iff(C5, 0) has a general form

f(x) = (f1(x), ..., f5(x))

(3.13) fi(x) = xi(
∑

a(i)
n1...n5

(f)xn1
1 ...xn5

5 ), a
(i)
0,...,0 = 1, x = (x1, ..., x5).

Thanks to [34], the Hopf algebra generated by the coefficients a(i)
n1...n5 could be mapped to

the Connes–Kreimer renormalization Hopf algebraHQCD of Feynman diagrams generated
by 1PI Green’s functions Gr(τ,Λτ ), r ∈ {ei, vj}i,j in QCD. The fixed point equation corre-
sponding to each Green’s functionGr(τ,Λτ ) generates a Hopf subalgebraHGr

(τ,Λτ )
ofHQCD

which is dual to a subgroup of D̄iff(C5, 0). Therefore for each Dyson–Schwinger equa-
tion DSEr, r ∈ {ei, vj}i,j in QCD, there exists a surjective map ρ̄DSEr : D̄iff(C5, 0) →
GDSEr (C) of Lie groups which enables us to represent the spectral triple of GDSEr (C) in
terms of a sub-spectral triple of the infinite dimensional spectral triple of D̄iff(C5, 0). �

Noncommutative Geometry enables us to deal with the theory of spectral geometry on
the basis of an operator theoretic setting where the fundamental integral can be explained
by the Dixmier trace which extends the Wodzicki residue from pseudodifferential operators
on a manifold to a general framework which concern spectral triples [12]. We have

∫
T :=

Ress=0Tr(T |D|−s).
Now thanks to the discussed topics in this section, for each n, S(n)

DSE is a finite dimen-
sional spectral triple which is the result of the restriction of the spectral triple associated to
the complex Lie group GLmn(C) for some mn. This means that for each n, the functional
a 7−→ Tr+(a|D(n)

DSE|−mn) (as the usual Riemannian integral) provides a differential cal-
culus theory and spectral geometry with respect to the Riemannian volume form for S(n)

DSE.
This construction explains the geometric nature of a quantum motion which is approxi-
mated by partial sums of the unique solution XDSE of the corresponding equation DSE.



12 ALI SHOJAEI-FARD

In addition, Proposition 3.2 opens a new way to work on the formulation of a spectral ge-
ometry for S⊕DSE on the basis of the Connes–Dixmier traces such that the noncommutative
integral at this level, which have the general form

(3.14) a⊕ 7−→ Trω(a⊕|D
⊕

DSE|−p)

for some p ≥ 1 and state ω, is capable to describe the geometry of Dyson–Schwinger
equations.

4. THE EVOLUTION OF GREEN’S FUNCTIONS UNDER A MATHEMATICAL SETTING

In this section we plan to modify the concept of ”evolution” for the study of infinite
formal expansions of Feynman diagrams which contribute to non-perturbative solutions of
fixed point equations in Green’s functions in a given Quantum Field Theory with strong
coupling constants. We will apply the Gelfand transform [12] to obtain a new modification
of the Fourier transformation for the space of Feynman diagrams. In addition, we will
study the generalized Dyson series, which was formulated by Johnson and Lapidus [15],
to improve it for the level of Dyson–Schwinger equations.

For a given gauge field theory Φ, set HΦ as the collection of all Feynman diagrams
and their formal expansions which contribute to Green’s functions and all other graphs
produced by insertion, quotient and shrinking. Let V (Φ) be the countable set of decorated
vertices which represent all possible interactions among elementary particles in Φ. All
graphs in HΦ are decorated by some objects of V (Φ). Fix a bijection α between edges
of the infinite complete graph KV (Φ) and the set N of natural numbers. For a given real
number c > 1, we can define a metric structure onHΦ given by

dαc : HΦ ×HΦ −→ [0,∞)

(4.1) dαc (Γ1,Γ2) :=
∑

e∈Γ1
⊙

Γ2

c−α(e)

such that
⊙

is the symmetric difference as a binary operation on graphs in HΦ with re-
spect to external or internal edges. Thanks to [19, 31], we can show that dαc is a translation-
invariant metric such that for real numbers c1, c2 > 1, the resulting metrics dαc1 and dαc2
generate the equivalent topology. On the other hand, there is a natural one to one and onto
correspondence between the set HΦ and the set {0, 1}KV (Φ) of all functions from KV (Φ)

to Z2 which supports the existence of a commutative topological Z2-algebra structure on
HΦ via pointwise addition and multiplication. The binary operation

⊙
gives an abelian

compact Hausdorff topological group structure such that the empty graph is the zero ele-
ment for this group. The product type σ-algebra

∑
prod can be applied to build a new Haar

measure µHaar onHΦ. We use the notation

(4.2) GΦ := (HΦ, dαc ,
⊙

,
∑
prod

, µHaar)

for the resulting space of graphs which contribute to the physical theory Φ.

4.1. Evolution via Fourier transformation. The space GΦ might contain some graphs
which are not necessarily Feynman diagrams but they are the results of some mathematical
operations on Feynman diagrams. In addition, infinite formal expansions of Feynman dia-
grams which contribute to solutions of Dyson–Schwinger equations belong to this measure
space. In this part we plan to formulate a generalization of the Fourier transformation for
the study of Green’s functions in terms of µHaar-integrable functions on GΦ.

Consider the space L1(GΦ, µHaar) of all complex valued µHaar-integrable functions
on GΦ which is a complex commutative Banach algebra with respect to the convolution
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product

(4.3) f1 ∗B f2(Γ1) =

∫
GΦ

f1(Γ2)f2(Γ−1
2

⊙
Γ1)dµHaar(Γ2), f1, f2 ∈ L1(GΦ, µHaar)

such that Γ−1
2 is the inverse of the graph with respect to the group structure. We apply

the infinitesimal delta function δ as the unit for this Banach algebra where it obeys the
condition

(4.4)
∫
GΦ

f(Γ)δ(Γ)dµHaar(Γ) = f(I)

for each f ∈ L1(GΦ, µHaar) and each graph Γ ∈ GΦ such that I is the empty graph.

Lemma 4.1. For any f ∈ L1(GΦ, µHaar), the spectrum

sp(f) := {λ ∈ C : f − λδ not invertible}
is non-empty.

Proof. It is trivial if f = 0. For a given non-zero µ-integrable function f , suppose sp(f) =
∅ which means that the function R : C −→ L1(GΦ, µHaar), λ 7−→ (f − λδ)−1 is well-
defined and it is holomorphic, non-constant and bounded.

Now we adapt the proof of Theorem 1 in [28] for our framework. For any bounded
linear functional F on L1(GΦ, µHaar) define a new function G on R2 given by G(x, y) :=
F (R(xeiy)) which is continuously differentiable with respect to variables x and y. Now
by differentiation under the integral sign from the holomorphic bounded functionK(x) :=∫ 2π

0
G(x, y)dy, we have K ′(x) = 0. So K is a constant function.

This fact shows the contradiction produced by our initial assumption which means that
sp(f) should be non-empty. �

Thanks to the Hilbert’s Nullstellensatz, it is possible to formulate a natural one to one
correspondence between the set of maximal ideals of the Banach algebra L1(GΦ, µHaar)
and the set of characters on the space L1(GΦ, µHaar). This correspondence is determined
by the ideal generated from kernel of any character.

Lemma 4.2. The space Ω(L1(GΦ, µHaar)) of all characters of the complex Banach alge-
bra L1(GΦ, µHaar) is a compact Hausdorff topological space.

Proof. Each ψ ∈ Ω(L1(GΦ, µHaar)) is an algebra homomorphism from L1(GΦ, µHaar) to
C such that ψ(δ) = 1. First we show that ψ is continuous of norm 1. Suppose it is not;
i.e. there exists a function f ∈ L1(GΦ, µHaar) such that ||f || < 1 and ψ(f) = 1. Set
g :=

∑
n≥1 f

n with respect to the convolution product. From the equation g = f + fg we
will have

(4.5) ψ(g) = ψ(f) + ψ(f)ψ(g) = 1 + ψ(g)

which shows a contradiction. So the norm of ψ is less than or equal to 1 and ψ(δ) = 1
which implies that ||ψ|| = 1. Thanks to this fact, it is possible to show that Ω(L1(GΦ, µHaar))
is a closed subset of the unit ball of the dual space L1(GΦ, µHaar)

∗ which is a compact
Hausdorff space with respect to the *-weak topology. Therefore Ω(L1(GΦ, µHaar)) is a
compact Hausdorff topological space. �

Our goal is to build a mathematical formalism for the description of the evolution of
infinite number of interactions among elementary particles which are encoded under the
solution of a given Dyson–Schwinger equation. Actually, the objects of the complex Ba-
nach algebra L1(Gφ, µHaar) together with a modified version of the Fourier transformation
will be the original tools to achieve our goal.

The Gelfand transform

(4.6) L1(GΦ, µHaar) −→ C0(Ω(L1(GΦ, µHaar)))
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given by f 7−→ f̃ such that f̃(ψ) := ψ(f) is a norm decreasing algebraic homomorphism
such that its image separates µ-integrable functions on GΦ. In addition, we have

(4.7) ||f̃ ||∞ = max{|λ| : λ ∈ sp(f)}.

Thanks to the Pontryagin duality Theorem [26], the Fourier transformation for locally
compact abelian groups has a close relation with the Gelfand transform. It is shown that
there is a correspondence between elements of the topological space Ω(L1(GΦ, µHaar))
and elements of the Pontryagin dual. Therefore the canonical isomorphism of the form
evL1(GΦ,µHaar)(Γ)(ρ) = ρ(Γ) ∈ S1 ⊂ C enables us to define the Fourier transformation
on L1(GΦ, µHaar) by the following way

(4.8) f̂(ρ) =

∫
GΦ

f(Γ)ρ(Γ)dµHaar(Γ).

The convolution product (4.3) on L1(GΦ, µHaar) and the transformation (4.8) show that
F{f ∗B g} = F{f}F{g}.

The generalized Fourier transformation (4.8) allows us to analyze a function f ∈ L1(GΦ, µHaar)
defined on infinite formal expansion of Feynman diagrams in terms of simple µHaar-
measurable functions with respect to partial sums. While the Gelfand transform separates
functions of the Banach algebra L1(GΦ, µHaar), the application of the generalized Fourier
transformation (4.8) enables us to study the evolutions of finite expansions of Feynman dia-
grams (as partial sums) which converges to the unique solutionXDSE of a non-perturbative
equation DSE in the direction of a given µ-integrable function f .

Perturbative QCD is only capable to concern Green’s functions as convergent geo-
metric series in sufficiently small couplings to generate some information. In low en-
ergy level QCD we need to deal with the divergent version of Green’s functions Gr(τ,Λτ ),
r ∈ {ei, vj}i,j which contains Feynman diagrams with infinite loop numbers and increas-
ing powers of strong coupling constants g ≥ 1. Thanks to the built mathematical ma-
chinery, now it is possible to provide a new analytic description of these divergent Green’s
functions.

Corollary 4.3. The Fourier transformation of the characteristic function χGr
(τ,Λτ )

of each
Green’s function Gr(τ,Λτ ), r ∈ {ei, vj}i,j , i = 1, 2, 3, j = 1, ..., 5 in QCD is well-defined.

Proof. χ̂Gr
(τ,Λτ )

is the convergent limit of the sequence {χ̂Gr,l
(τ,Λτ )

}l≥0 of the Fourier trans-

formations of the characteristic functions of Green’s functions Gr,l(τ,Λτ ) as functions in the
Banach algebra L1(GΦ, µHaar). �

4.2. Evolution via Dyson series. Determining potential quantities among particles (such
as heavy quark and antiquark in QCD) is known as a difficult challenge for the phenomeno-
logical description of interplay of perturbative and non-perturbative regions in gauge field
theories. In this part we plan to formulate a new generalization of the classical Dyson
series for the study of potential quantities of Dyson–Schwinger equations.

Classical Dyson series have provided a practical treatment to describe the behavior of a
single quantum mechanical particle which moves in a given potential. It has been formu-
lated in terms of a particular class of functionals on C[0, t] of the form

(4.9) F (y) := exp{
∫

(0,t)

θ(s, y(s))ds}

such that the complex valued function θ on [0, t]×Rn is a fixed potential. This functional
has been considered under a measure theoretic setting such that the standard Lebesgue–
Stieltjes measure was replaced with other complex Borel measures and then it was shown
that for each complex number with positive real part λ, the operators Kλ(Fn) exist for
each n such that Fn(y) := (

∫
(0,t)

θ(s, y(s))dη)n and Kλ(F ) =
∑
n≥0 anKλ(Fn) [15]. In
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[31] the compact topological abelian group structure on HΦ has been considered under a
measure theoretic setting where the existence of different but equivalent measures on this
space has been studied. The connection between the Haar integration theory on HΦ and
the standard Riemann–Lebesgue integration theory on real valued functions has been con-
cerned in [31] where as the result, the Johnson–Lapidus generalized Dyson series (which
was made to improve Feynman’s operational calculus) has been modified for the level of
the Haar measure µHaar on HΦ. In the final part of this section we plan to improve our
modification and give a new extension of the Johnson–Lapidus Theorem which works for
the level of functionals on the space of continuous functions on GΦ.

Proposition 4.4. Let θ be a complex valued function on GΦ×R2 and v(z) =
∑
n≥0 anz

n

with the radius of convergency strictly grater than ||θ||∞;µHaar
. For the given functional F

on L1(GΦ, µHaar) with the form

(4.10) F (f) := v(

∫
GΦ

θ(Γ, f(Γ))dµHaar)

, there exists a family of operators {Kλ(Fn)}n∈N such that λ’s are complex numbers with
positive real part and Fn(f) := (

∫
GΦ θ(Γ, f(Γ))dµHaar)

n. In addition, we have

(4.11) Kλ(F ) =
∑
n≥0

anKλ(Fn).

Proof. The interrelationship between the Haar integration theory on HΦ with respect to
the measure µHaar and the Lebesgue integration theory with respect to the Borel measure
has been considered in [Proposition 3.23 [31]]. It has led us to extend the Johnson-Lapidus
generalized Dyson series for the level of the Haar measure µHaar ([Proposition 3.26 [31]]).
In addition, as we have discussed GΦ is a compact Hausdorff topological space. The den-
sity of the topological space Cc(GΦ) of continuous functions on GΦ with compact sup-
port in L1(GΦ, µHaar) allows us to lift the Johnson-Lapidus generalized Dyson series onto
L1(GΦ, µHaar). Thanks to [Theorem 1.1 [15]], we have the Proof. �

We can apply this class of functionals at the level of GΦ to explain the evolution of
non-perturbative situations.

Corollary 4.5. Let DSE be a non-perturbative type equation of the form (2.5) with the
unique solution XDSE (as the large graph) determined by the recursive relations (2.6).
The functionals Kλ(F ) (determined by Proposition 4.4) interprets the evolution of the
large graph XDSE on the basis of its partial sums.

Proof. For a given large graph XDSE as the unique solution of a given equation DSE,
let X(n) := X1 + ... + Xn be the partial sum of the order n with the corresponding
characteristic function χ(n) which belongs to L1(GΦ, µHaar). Now it is enough to apply
Proposition 4.4 for these characteristic functions. As the output, the integrand of the n-term
encodes the following evolutions: a free evolution from X(0) = I (empty graph) to X(1),
interactions of particles in X(1) with the potential θ, free evolution from X(1) to X(2),
and so on up to nth integration with θ at the level X(n) followed by a free evolution from
X(n) to XDSE. By integration we will concern all partial sums of the unique solution of
the equation DSE. �

One immediate application of our generalized Dyson series is to provide a new treat-
ment to compare the behavior of Dyson–Schwinger equations in different potentials. Propo-
sition 4.4 and Corollary 4.5 provide a new mathematical process for the study of (optimal)
potentials for interactions of particles which contribute to a single Feynman diagram or
free evolutions of particles in solutions of Dyson–Schwinger equations.
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5. CONCLUSION

The original effort in this research work is to build some new practical mathematical
models which are useful for the explanation of dynamics and geometry of non-perturbative
phenomena derived from Dyson–Schwinger equations in strong coupling constants. Here
is a short list of the original achievements of our research effort.

(A) Thanks to the Connes–Kreimer renormalization Hopf algebra, we have studied the
dynamics of non-perturbative aspects on the basis of new enriched versions of the renor-
malization group which are capable to encode the behavior of Dyson–Schwinger equations
during the re-scaling of momentum parameter and bare strong coupling constant. Indeed,
we have clarified the importance of a rigid abstract renormalization group method to con-
trol bare strong coupling constants before any regularization procedure. As we know,
asymptotically free theories in Theoretical Physics enable us to have perturbatively cal-
culable properties in the ultraviolet divergencies where the running coupling are small
enough [6, 8]. Thanks to the structure of the multi-scale non-perturbative renormalization
group (i.e. Corollary 2.5), we expect that our framework is useful to apply for models of
non-perturbative asymptotic freedom.

(B) The geometry of quantum motions have been concerned where we have built a new
class of spectral triples which are originated from solutions of Dyson–Schwinger equa-
tions. This new mathematical structure has potential to initiate the foundations of a theory
of spectral geometry via Noncommutative Geometry in dealing with non-perturbative pa-
rameters.

(C) We have built a complex Banach algebraic structure on the space of (large) Feyn-
man graphs of a given QFT-model physical theory where as the result we obtained a new
interpretation of the concept of evolution at the level of Dyson–Schwinger equations on
the basis of the Fourier transformation. Furthermore, we have obtained a new extension
of the Johnson–Lapidus generalized Dyson series for the space L1(GΦ, µHaar). This re-
sult has addressed another method to evaluate infinite formal expansions originated from
Dyson–Schwinger equations under generalized Dyson series.

We finish the conclusion part with addressing some open research topics in this direction
which shows the potential of our construction for making new progresses. At first, an
enrichment of the renormalization Hopf algebra on ribbon graphs has been formulated [20]
which leads us to consider Dyson–Schwinger equations for ribbon graphs. Thanks to the
built methodology in this research article, it will be reasonable to work on the construction
of a new class of non-perturbative spectral triples which encodes non-perturbative aspects
originated from expansions of ribbon graphs and develop our noncommutative geometric
framework to the level of tensor and matrix models. At second, the Feynman path integral
approach has shown its influence in the recent progresses around Quantum Gravity [13]
and in addition, the appearance of a Hopf algebraic formalism in this modern QFT–type
model has already been concerned [32, 33]. Thanks to these important progresses and the
built methodology in this research work, it is useful to search on the generalizations of our
framework to formulate an operator theoretic setting for Quantum Gravity.
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